Wednesday, July 12, 2006

Austenitic Manganese Steels

The original austenitic manganese steel, containing about 1.2% C and 12% Mn, was invented by Sir Robert Hadfield in 1882. Hadfield`s steel was unique in that it combined high toughness and ductility with high work-hardening capacity and, usually, good resistance to wear.

Consequently, it rapidly gained acceptance as a very useful engineering material. Hadfield`s austenitic manganese steel is still used extensively, with minor modifications in composition and heat treatment, primarily in the fields of earthmoving, mining, quarrying, oil well drilling, steelmaking, railroading, dredging, lumbering, and in the manufacture of cement and clay products. Austenitic manganese steel is used in equipment for handling and processing earthen materials (such as rock crushers, grinding mills, dredge buckets, power shovel buckets and teeth, and pumps for handling gravel and rocks). Other applications include fragmentizer hammers and grates for automobile recycling and military applications such as tank track pads.

Many variations of the original austenitic manganese steel have been proposed, often in unexploited patents, but only a few have been adopted as significant improvements. These usually involve variations of carbon and manganese, with or without additional alloys such as chromium, nickel, molybdenum, vanadium, titanium, and bismuth.

The available assortment of wrought grades is smaller and usually approximates ASTM composition B-3. Some wrought grades contain about 0.8% C and either 3% Ni or 1% Mo. Large heat orders are usually required for the production of wrought grades, while cast grades and their modifications are more easily obtained in small lots. A manganese steel foundry may have several dozen modified grades on its production list. Modified grades are usually produced to meet the requirements of application, section size, casting size, cost, and weldability considerations.

The mechanical properties of austenitic manganese steel vary with both carbon and manganese content. As carbon is increased it becomes increasingly difficult to retain all of the carbon in solid solution, which may account for reductions in tensile strength and ductility.

Nevertheless, because abrasion resistance tends to increase with carbon, carbon content higher than the 1.2% midrange of grade A may be preferred even when ductility is lowered. Carbon content above 1.4% is seldom used because of the difficulty of obtaining an austenitic structure sufficiently free of grain, boundary carbides, which are detrimental to strength and ductility. The effect can also be observed in 13% Mn steels containing less than 1.4% C because segregation may result in local variations of ±17% (±0.2%C) from the average carbon level determined by chemical analysis.

The low carbon content (0.7% C minimum) of grades D and E-1 may be used to minimize carbide precipitation in heavy castings or in weldments, and similar low carbon contents are specified for welding filler metal.

Carbides form in castings that are cooled slowly in the molds. In fact, carbides form in practically all as cast grades containing more than 1.0% C, regardless of mold cooling rates. They form in heavy-section castings during heat treatment if quenching is ineffective in producing rapid cooling throughout the entire section thickness. Carbides can form during welding or during service at temperatures above about 275°C. If carbon and manganese are lowered together, for instance to 0.53% C with 8.3% Mn or 0.62% C with 8.1% Mn, the work-hardening rate is increased because of the formation of strain-induced a (body-centered-cubic, or bcc) martensite. However, this does not provide enhanced abrasion resistance (at least to high-stress grinding abrasion) as is often hoped.

Titanium can reduce carbon in austenite by forming very stable carbides. The resulting properties may simulate those of lower-carbon grade. Titanium may also somewhat neutralize the effect of excessive phosphorus; some European practice is apparently based on this idea. Microalloying additions (<0.1%) of titanium, vanadium, boron, zirconium and nitrogen have been reported to promote grain refinement in manganese steels. The effect, however, is inconsistent. Higher level of these elements can result in serious losses in ductility. Nitrogen in amounts greater than 0.20% can cause gas porosity in castings. An overall reduction in grain size lowers the susceptibility of the steel to hot tearing.

Sulfur. The sulfur content in manganese steels seldom influences its properties, because the scavenging effect of manganese operates to eliminate sulfur by fixing it in the form of innocuous, rounded, sulfide inclusions. The elongation of these inclusions in wrought steels may contribute in directional properties; in cast steels such inclusions are harmless. However, it is best to keep sulfur as low as is practically possible to minimize the number of inclusions in the microstructure that would be potential sites for the nucleation of fatigue cracks in service.